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1. Introduction

This is the final report on the URI project entitled "Computational and

Analytical Methods in Nonlinear Fluid Dynamics" started in 1989 at Lehigh University p

in the Department of Mechanical Engineering and Mechanics. The present report

summarizes work completed, as well as still in progress, at the end of the funding. The

central focus of the program was on the application and development of modern

analytical and computational methods to the solution of nonlinear problems in fluid

dynamics and reactive gas dynamics. The research was carried out within the Division

of Engineering Mathematics in the Department of Mechanical Engineering and

Mechanics and principally involved Professors P. A. Blythe, E. Varley and J. D. A.

Walker. In addition, the program involved various international collaborations.

Professor Blythe completed work on reactive gas dynamics with Professor D. Crighton

F.R.S. of Cambridge University in the United Kingdom. Professor Walker and his

students carried out joint work with Professor F. T. Smith, F.R.S. of University College

London on various problems in unsteady flow and turbulent boundary layers. This

research will be briefly summarized subsequently.

A major portion of the work carried out under the contract was computational

and concerned the incorporation of analytical local solutions into computational

algorithms. In i,.cordance with the theme of the URI program to enhance University

infrastructure, two Silicon Graphics 4D25 workstations were purchased with contract

funds. These computers were connected to the University network in a computational

lab principally assigned to fluid mechanics research. They received extensive usage over

the course of the contract and are still regularly used on a daily basis by graduate

students and faculty.

During the contract period, four graduate students were funded (in full or in

part) for studies toward their Ph.D. These students were supervised by Professor

J. D. A. Walker and at present one Ph.D. has been awarded; the three other students

will receive their Ph.D's in December, 1993. The students and their thesis topics are as

follows:

(1) Ammar T. Degani, Ph.D. 1991, "The Three-Dimensional Turbulent Boundary

Layer - Theory and Application".

(2) Kevin Cassel, Ph.D. (expected) 1993, "Interactive Boundary Layers".
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(3) Jun He, Ph.D. (expected) 1993, "High-Speed Compressible Turbulent Boundary 4
Layers".

(4) R. I. Puhak, Ph.D. (expected) 1993, "Flow Structure Upstream of Three-
Dimensional Obstacles".

Mr. Cassel and Mr. Puhak are American citizens while Dr. Degani is a
residential alien. Dr. Degani recently won a Nason Postdoctoral Fellowship in Parallel
Processing at Syracuse University, while Mr. Cassel was successful in a competition for

a Postdoctoral Fellowship at NIST in Combustion Studies.

In the following sections, research carried out under the grant is briefly

summarized; more detail is available in the publications summarized at the end of this

report.

2. Description of Research

A. Professor D. A. Walker

A.1 Analytical and Computational Studies of Unsteady Separation

Associated Graduate Student: Kevin Cassel
Status: Ph.D., draft of thesis complete, expected graduation December 1993.

Unsteady separation of boundary layers occurs in a variety of physical situations
such as dynamic stall in rapidly pitching airfoils, vortex shedding in turbines and
eruption of the wall layer in transitioning and turbulent boundary layers. Until

relatively recently, the nature and causes of this phenomena at high Reynolds numbers

have not been well understood. The Ph.D. thesis of Van Dommelen (1981) and
subsequent theoretical work by Elliott et al. (1983) revealed that in two-dimensional

flows, a generic response develops within a thin boundary-layer flow that is exposed to a

persistent adverse pressure gradient. The influence of viscosity first leads to the
evolution of recirculating flow within the boundary layer and if the external adverse
pressure gradient is maintained, a sharply focussed eruption of the surface layer
develops abruptly at a subsequent time. The calculation of such flows, using
conventional numerical methods based on the Eulerian description of the flow field, is
not possible owing to the rapid development of a "spike-like" eruption of the surface

flow. Van Dommelen (1981) was able to calculate the evolution of the boundary layer

2
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on an impulsively-moved circular cylinder through the use of Lagrangian methods, I
wherein the trajectories of a large number of individual fluid particles were calculated.

In this manner, it proved possible to track the phenomenon up to the formation of a

sharp spike in displacement thickness. The theoretical account of Elliott et al. (1983)

suggests that the formation of the "spikes" is a generic state passed through by most

erupting boundary layers at high Reynolds numbers. Recently, this suggestion has been

3upported by numerical solutions of the boundary layer induced by a vortex above a

plane wall, carried out by Peridier et al. (1991a, 1991b). In the limit of large Reynolds

numbers, the vortex-induced separating boundary layer evolves toward a singularity

structure which is essentially similar to that described by Elliott et al. (1983). As the

singularity structure develops, the external flow field must be allowed to change and

reflect the fact that boundary-layer vorticity is now shooting rapidly toward the outer

region.

Because unsteady separation at high Reynolds numbers is pervasive in

aeronautical applications, it is important to develop an understanding of the steps that

occur in the process as a separating boundary layer leaves the surface. Until recently, it

was believed by many authors that the problem could be handled using conventional

interacting boundary layer concepts. The present research has definitively shown that

this is not the case and that more sophisticated algorithms will be required for this

important problem. In 1983, Elliott et al. formulated a boundary value problem

describing what we refer to as the first interactive stage; this occurs just prior to the

evolution of a singularity in the non-interactive problem and is the first stage wherein

the external flow is influenced by the rapidly thickening viscous region near the surface.

The unsteady boundary-value associated with this stage is extremely complex from a

numerical standpoint owing to difficulties associated with the boundary conditions.

The first numerical solutions for the first interactive stage were obtained in the

present program. By recasting the problem in a Lagrangian formulation, it proved

possible to formulate a numerical algorithm that would accurately calculate the flow

development in the first interactive stage. Initially, it was expected that the solution

would evolve toward another singularity but repeated calculations revealed the

evolution of a high frequency instability. As the meshes were refined, this instability

was found to occur at progressively earlier stages. Repeated checks on the numerical

work and analysis of the instability were carried out. This work has shown that the

instability is not numerical but appears to be a new type of interactive instability. It is

primarily inviscid in nature but does not involve an inflectional velocity profile. A
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paper on this discovery has been submitted to the Journal of Fluid Mechanics (Cassel,

Smith & Walker, 1993).

A.2 Embedded Function Methods fr Three-Dimensional Turbulent udary Lays
Associated Graduate Student: A. T. Degani

Status: Ph.D. awarded in October, 1991

In most conventional methods for the calculation of three-dimensional turbulent
boundary layers, the majority of computational time and resources is invested in

resolving the severe gradients in the velocity and temperature gradients that occur in

the near-wall region. In the present research asymptotic analysis was used to develop

local analytical solutions that could be embedded in a general computational scheme for

the turbulent boundary layer. In the papers by Degani et al. (1992, 1993), the method

of mazched expansions was used to determine the general asymptotic structure of an

attached three-dimensional turbulent boundary layer. This work established for the

first time that the inner wall layer exhibits an essentially universal self-similar behavior

and the matching conditions for the velocity profiles near the edge of the wall layer

were determined. A set of analytical profiles that can be used in the turbulent wall

layer in a computational algorithm were developed. The concept was demonstrated in a

three-dimensional boundary-layer prediction code (Degani & Walker, 1993) where the

analytic embedded functions were used to "step over" the turbulent wall layer in a

calculation. In this manner, it is only necessary to carry out a computation in the outer
part of the boundary layer and, skin friction and heat transfer coefficients are

determined through matching to the analytic embedded functions. Through use of

asymptotic theory and the embedded function methodology, it has proved possible to

construct a much more efficient algorithm for turbulence prediction near walls in which

the total number of mesh points used may be reduced by about 50% (as compared to a

conventional method) with no degradation in accuracy.

A.3 Modeling of Supersonic and Hypersonic Turbulent Bounday Layers

Associated Graduate Student: Jun He

Status: Thesis draft complete, Ph.D. expected December, 1993.

Supersonic and hypersonic turbulent boundary layers occur in a variety of

important aerodynamic applications. Unfortunately, most turbulence models for high-

speed compressible flow are based upon ad hoc extensions of turbulence models that 0

have been correlated to represent subsonic data. As the Mach number of the
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mainstream flow increases, the structure of the turbulent boundary changes and a new
physical effect becomes important, namely dissipation of kinetic energy near the surface X

into heat energy. Unfortunately, there are few reliable measurements of the

temperature distribution in the supersonic/hypersonic flow regime or even of the

turbulence quantities themselves. Existing turbulence models currently in use can

easily be shown to be incompatible with experimental data as well as inconsistent in the

asymptotic limit of high Reynolds number flows.

The objective of this research was to determine the asymptotic structure of a

high-speed compressible turbulent flow in the limit of large Reynolds numbers and
further to develop simple turbulence models which can predict skin friction and heat

transfer coefficients. The study of He et al. (1992) reports the development of a self-

consistent mathematical asymptotic structure for high-speed compressible turbulent

boiindary layers. In this paper the adiabatic wall was considered and an analytical

expression was derived for the recovery factor. New and simple turbulence models were

obtained, and a direct comparison with experimental data showed excellent agreement

for both the velocity and total enthalpy data. Subsequent work has incorporated the

influence of heat transfer with the new models and also to extend the theory into the

hypersonic regimes. The theory described in He et al. (1992) is valid for mainstream

Mach numbers up to about 6. 0

A.4 Unsteady Three-Dimensional Separation

Associated Graduate Student: Robert Puhak

Status: Ph.D. expected in December, 1993.

Recent advances in the theory of unsteady separation (Van Dommelen &

Cowley, 1990; Cowley et al. 1991) have suggested that when a three-dimensional

boundary layer undergoes a process of unsteady separation from a surface, a generic

structure develops in a high Reynolds number flow. It is suggested that the eruption

takes the form of a sharply focussed tongue of fluid that moves rapidly away from the
surface. In three-dimensional flows, boundary-layer separation is believed to initiate

somewhere along the surface of zero vorticity (where both the transverse and

streamwise vorticity components vanish simultaneously). However, numerical work on

three-dimensional separated flows is rather limited. The objective of this research is to

calculate the evolution of some fundamental problems involving three-dimensional

unsteady separation of a surface boundary-layer. The goal is to track the evolution of

the different types of recirculations that can develop and from this determine how the

5



layer evolves toward an eruption.

A model problem under consideration consists of a circular cylinder mounted on

a flat surface and a high speed flow moving steadily from left to right. This geometry

represents a generic type of configuration occurring in a large number of situations

(wing/air frame junctures, turbine blade base flows, for example), and it is important to

understand the dynamics of such regions. At present numerical solutions for the

developing flow on the upstream and downstream symmetry plane have been obtained.

The upstream symmetry plane is of particular interest since here the adverse pressure

gradient due to the cylinder gives rise to unsteady separation in the end-wali boundary-

layer. The present computations for the developing boundary layer on the end wall are

among the first to be carried out in three dimensions in Lagrangian coordinates.

Calculated results show the evolution of a complex separation singularity (Degani,

Puhak & Walker, 1993).
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B. Professor F, V
U

B.1 Applications of Some Exact Solutions to the Navier-Stokes Equations

Two families of exact solutions to the Navier-Stokes equations (NSE) have been
used to analyze some technically important flows. The first family, designated F1

flows, is characterized by the fact that the component of fluid velocity in the direction

normal to some plane is a function only of time, t, and the distance, y, from that plane.

The plate can rotate and translate with time varying velocities. In addition to being
exact solutions to the NSE, the F1 solutions are exact solutions to the boundary-layer

equations (BLE): the terms that are usually omitted to obtain the BLE from the NSE

are identically zero. Well-known examples of parallel F1 flows are Couette (1890),

Rayleigh (1911) and Ekman (1905) flows. Examples of non-parallel flcovs are the
various von Karman (1921) swirling flows, and the Blasius-Hiemenz (1908, 1911) flow at

a forward stagnation point. In these examples, either the fluid is contained between

two parallel plane surfaces, or occupies a semi-infinite region bounded by a single plane

surface. For Couette and Rayleigh flows, the bounding surfaces translate in directions

parallel to their planes, but do not rotate; for Ekinan flows the bounding surfaces rotate

about the same fixed axis with the same constant total angular velocity and translate in
directions parallel to their planes. von Karman flows are generated when two parallel

plane surfaces rotate with different angular speeds about a common, fixed axis that is

normal to their planes. The Blasius-Hiemenz flow approximates that produced near a

line of symmetry when a fluid is squeezed between two parallel plates moving with

different speeds normal to their planes.

All the viscometric-type flows listed above are produced when the motions of the

bounding plane surfaces have at most two degrees of freedom. The F1 solutions to the

NSE obtained in the course of this research may be used to describe flows that are
produced when the bounding surfaces move in any manner that is compatible with the

remaining plane, rigid and parallel: they can translate in directions parallel and normal

to their planes and rotate about different axes. The mathematical problem reduces to

that of solving a set of PDE in the two independent variables (t,y). This can be split

into two sets; the first set, which is usually nonlinear, describes the primary component

of the flow and is identical to that governing one of the flows listed above: it uncouples

from the second set which, essentially, is linear with coefficients that are determined by

the primary component of the flow. Two sub-classes of F1 flows are of special interest

because they involve relatively simple mathematics. The simpler one is characterized

8
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by the fact that the prime- ' component is such that the coefficients in the second set of

linear PDE are functions only of t. These equations can be transformed into two, a

uncoupled, constant coefficient diffusion equations. For the second sub-class of F1 l

flows, the primary component of the flow is steady and is governed by a set of nonlinear

ODE; the second set of linear equations have coefficients that are functions only of y.

The second family, the F2 flows, are generalized plane flows in the sense that, if

(x1 , x2, y) denote the Cartesian co-ordinates of a point in the fluid at which the velocity

components are (ul, u2 , v), the ui are independent of y. One example is Poiseuille

(1984) pipe flow, for which the ui =0 and v=v(xl, x2 ); another is the Burer (1941)

vortex flow, for which v = vly and the flow is radially symmetric about the y-axis. As

another example, we have analyzed unsteady, radially symmetric, F2 flows for which

v = vl(t.r)y + vo(t.r). These are produced near the outer surface of a circular cylinder

whose velocity varies in time: the surface may rotate with a time varying angular

velocity, translate with a time varying velocity in the direction parallel to the axis of

the cylinder, and expand or contract with a time varying velocity in the radial

direction. Away from the cylinder the flow asymptotes to that in an unsteady Burger

vortex.

The main result of this research has been to show how the Fl solutions of the * .
NSE may be used to analyze some features of the strong local interaction between a

thin shear layer, in which the flow is initially parallel, and a disturbance in the outer

mainstream. An excellent example of such a problem occurs in the study of the strong

local atmospheric disturbance that is produced in a layer of air, where the flow is

strongly sheared, by the passage of a tornado. Here, the lower boundary of the layer,

representing the earth, is fixed and the upper boundary, representing the cloud base, is

rotating and translating. Mainly, we have concentrated on the flow in regions away

from material boundaries where it is the fact that the fluid is strongly sheared that

controls the interaction with the mainstream flow and not the presence of rigid

boundaries. In this sense the layer is a free shear layer, and the governing equations can

be transformed into constant coefficient diffusion equations.

The solutions to the NSE equations describing F1 flows may be used only to

describe the local behavior of global flow solutions that must be determined either

numerically or by using approximate equations. These approximate equations are

obtained by noting that these global flows are often well-described by solutions of the

BLE in which the pressure p(t, X1 , x2 ) can be estimated a priori. Moreover, away from

rigid boundaries, even though the flow is strongly sheared, the viscous terms in the BLE

9
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are unimportant and can be omitted. We have described a procedure that can be used 0
to intcgrate the resulting hydraulic flow equations (HFE). This involves reformulating

the equations in terms of Lagrangian variables, thus reducing the problex.i of solving a
system ,,t nonlinear PDE to that of solving a system of nonlinear ODE. In the special

case of F1 flows, the pressure gradient terms, Op/Oxi, are linear forms in the xi with

coefficients that depend on t. The resulting ODE are linear, and a general

representation for the flow variables, which are also exact solutions for the Euler

equations (EE), can be found. These solutions are used to show that unless p(t, x1 , x2 )

is estimated with care, the Fl solutions to both the EE and the NSE develop

singularities in a finite time.

As an example of our general analysis we have described the flow that is

produced at the edge of a shear layer during the p~tssage of a Rankine vortex in the

mainstream. Far from the layer the axis o(f the vortex is perpendicular to the layer and

moves with a time varying velocity; the strength of the vortex also varies with time.

This flow models that occurring in the center of a tornado which, far above the earth, is

convected with the ambient wind-speed. The resulting flow is unsteady and fully three

dimensional.

The Fl and F2 solutions of the NSE are exact solutions to flow problems that are p *
highly idealized in that they involve boundaries of infinite extent. However, like the

classical Rayleigh and von Karman solutions, sometimes they can be used to provide

useful information about local condition in more complicated and realistic global flows.

For example. F1 flows ,-n be used to approximate a real flow in the v~cinity of an axis

of rotation or a line of symmetry, while F2 flows can be used in the vicinity of some

plane. The F1 and F2 solutions are similarity solutions of the NSE and, like other

similarity solutions, must be interpreted with care: they can be used only when it can

be argued that the local flow is well approximated by a viscometric flow.
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C. Professor L Al h
I

C. Wave Induced Ignition

C Io1

Excthermic reactions, with Arrhenius kinetics, depend exponentially on the

activation energy. In many cases this characteristic energy is relatively large and rapid

thermal heating occurs. Over the induction period prior to ignition the evolution of 5

small gas dvnami' disturbances is governed by the Clarke equation (Clarke 1981, see

§C.2). Analytical progress with this equation is difficult. Numerical solutions for semi-

infinite domains in which the reaction is switched on by the passage of a shock of finite

strength have been obtained by Clarke & Cant (1985) and by Jackson & Kapila (1985).

More recently, Blythe & Crighton (1989)' developed an asymptotic approach based on

the Newtonian limit -y--+1 where - is the frozen specific heat ratio. Excellent agreement

with the numerical calculations is found.

More complex problenms arise when the motion is generated in a finite domain by

an initial (weak) non-uniform temperature distribution. The ignition stage of these

disturbances is a precursor to the development of a local hot spot into a fully fledged

thermal exposition, and is again governed by Clarke's equation. Jackson, Kapila &

Stewart (1989) have investigated this class of problems by using co-ordinate expansions

combined with computational techniques. As in the shock generated problem,

analytical progress is difficult.

The research carried out tinder this part of the grant was concerned with

extending the Newtonian approach to examine:

(1) non-linear hot-spot structure and the reaction wave speed (§C.3);

(2) influence of upstream disturbances on shock induced ignition (§C.4); I

(3) spatio-temporal evolution of thermal irregularities in bounded domains (§C.5).

These problems have direct bearing on fundamental problems related to the

birth of detonation waves and the onset of thermal explosions in confined vessels.

Combustion-driven disturbances that propagate into non-uniform regions, possibly far

from thermodynamic equilibrium, also arise in flow fields that are characteristic of

proposed hypersonic transports.

'Hereafter referred to as BC.

12
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C.2 IjT Clake E i

Small disturbance theory at high activation energies f is governed by a

distinguished limit in which the disturbance amplitude is O(e). Here f-1 is a p

dimensionless measure relative to a background state characterized by a (dimensicaless)

temperature T = 1. Over the induction time scale local solutions can be expanded in

the form

T=To +fT2Tl(X,t) + .... (C.2.1)

where To is either unity or the initial temperature behind any reaction-inducing shock.

After suitably scaling the spatial co-ordinate x and the time t, the temperature

perturbation T1 can be shown to satisfy Clarke's equation

a02 o82)aTl (a2 a2' Tl
( -2 02-, --T- ( xx2) T = 0. (C.2.2)

In (C.2.2) the high frequency operator is associated with the frozen wave speed -y1/ 2 and

the low frequency operator with the isothermal (Newtonian) speed (-I in current

variables).

Although general analytical solutions of (C.2.2) do not appear to be possible,

progress has been made in the Newtonian limit -y--+l. To leading order the wave

equation (C.2.2) degenerates into

, - _ d2) _T = o, (C.2.3)

which can be integrated. However, as shown in BC for shock-induced ignition, this

result is not uniformly valid near the ignition point (hot spot) where local adjustments

take place in a region that is exponentially thin with respect to -Y - 1. Discussion of the

structure near the hot spot is reported in §C.3. Note that this analysis follows BC and

uses the ordered limit

1 > -Y - 1 > f, (C.2.4)

whereas the derivation of (C.2.2) is dependent only on the assumption that f < 1.

Modification of the Newtonian analysis given in BC is also required when (C.2.4)

is replaced by

13
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-1 = O(f) = o(1). (C.2.5)

For this limit, the Clarke equation is still valid, but the ignition time upstream of the

shock is now comparable with that downstream of the shock. Consequently, thermal

excitation ahead of the shock must be included in the analysis. Basic results, including

corrections to the ignition time, are outlined in §C.4.

As noted in the Introduction (§C.1), equation (C.2.2) also governs the evolution
of initial spatial thermal irregularities in bounded domains. The amplification of local

hot spots in such flows has been examined by Jackson, Kapila & Stewart (1989) when

"-y - 1 =0(1). An analytical approach, based on the Newtonian limit (C.2.4), is

described in §C.5.

C.3 Hiot 5_t Structure and Wave a

For shock induced ignition, the disturbance is initiated by a piston moving at

finite speed. Using expansions of the form (C.2.1), the small disturbance equations can
be written in characteristic form as

a" +(Pl +V) =e Tl, (C.3.1)

with

0±=- ±a (C.3.2)

Here p, is the pressure perturbation, v, is the velocity perturbation (relative to the

piston speed), ý is the distance from the piston face, and the time to ignition

r = ti - t, (C.3.3)

where ti is the ignition time on the piston face and must be determined as part of the

solution. The exponential term on the right-hand side of (C.3.1) represents the strong

influence of exothermic heating. Similarly, along the particle paths

-a-T- -- - = (1 -_) eTl (C.3.4)

with

S= ( - 1 )/. (C.3.5)

14
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These results are based on a one-step first order reaction with Arrhenius kinetics,

and the corresponding reduced rate law for the perturbation mass fraction y1 is u

-T =eT,(C.3.6)

where 0 is a dimensionless formation energy.

Newtoniar. expansions of the small disturbance equations correspond to the

subsequent limit b5-+O and, prior to ignition, have the form

T1 ((, r; 6) = T 1 0 (ý,T) + 6T 1(ý,r) + ... (C.3.7)

etc. Substitution into (C.3.1) - (C.3.6) shows that the solution for the leading order

terms can be written

TI 0 = - 3 Y10 = -tn(T +v- •

PIO= 1 2 &n(7 +V -) + f(r +) +g(r) +(C.3.8)

rIO-1 - V2 In(r + V - 1)+ f(T + •)-g(T - •

where

v 1=2 + o2 -(C-39)

and Mo is the initiating shock Mach number. Determination of the functions f(T) and

g(r") requires implernentating of suitable shock relations along the shock path

: V(ti - T). (C.3.10)

Solutions of the resulting functional equations can be expressed in the form

f(7 ) -- ( l -A 2 ) oo
4A •(Nn•[-n1-) r0

n = !(C.3.11)

(1g -A 2 ) o
4A (-N)n en[1-An(1 -_')] (r> -V) 0

n=l
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with

A N=1ZR, .2M (C.3.12)

Note that 1>A>O, 1>N>O.

Further details can be found in BC, together with determination of higher order

corrections. In particular, it is shown that the ignition time

ti = 1 + ab +..., (C.3.13)

where

a- ('+A) -2 f(r)dr. (C.3.14)

From (C.3.8) it can be seen that the solution has a logarithmic singularity at

r = 0 on the piston face 0 = 0. In fact (C.3.8) suggests that the singularity propagates

along

T=-

but this concerns events for r < 0 (t > ti) where the above small disturbance theory is

not valid.

The basic Newtonian expansion (C.3.7) fails near the hot spot r = 0, and it is

convenient to introduce a centered co-ordinate

x =V. (C.3.15)

From (C.3.8), the limiting behavior of the outer temperature becomes

T 1, -In T-en (1 +V- 1 X) +O(6). (C.3.16)

Newtonian small disturbances theory also predicts that the remaining thermodynamic

variables, including the density, have logarithmic singularities on the piston face at

T = 0. Near 7 = r = 0 it is necessary to introduce (r > 0) a nonlinear stretched time

through

16
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=-, n ( =( exp( - a/6)) (C.3.17) 0
U

and to seek local expansions

PI 09- ++P(X, a; 6), (C.3.18)

v= U(, a; 6),

etc.

It is not difficult to show that the leading approximations to 0 is given by

0, = - In[1 + C(a)x]. (C.3.19)

Here C(a) is defined implicitly by

CeC = V - 1 exp [V - 1 -a], (C.3.20) * .

and the derivation of (C.3.20) requires extending the analysis to second order terms (see

BC). Related results for the remaining dependent variables can also be obtained. In

particular, the leading order velocity

U C n [11+X (C.3.21)
denityisc 2  n[ll+CX1,

which, as required, vanishes on X = 0. Further, the logarithmic singularity in the outer

density is replaced by a bounded limit as a-*oo(r---0), which is consistent with the

numerical calculations of Jackson & Kapila and Clarke & Cant.

The representation (C.3.18) is not valid across r = 0, i.e. in r < 0 (see (C.3.17)).

To extend the solution into r < 0 it is necessary to introduce

=e-8/b, r=r/ =k1 (C.3.22), )X"

so that in r > 0 (r > 0)
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a= s-6 In r. (C.3.23)

Either directly from the governing equation, or by re-expressing (C.3.19) - (C.3.21) etc. S

in terms of s and r, it can be shown that

T,= s -n [r+ C(s)]+ r+C(s) [1++(s) {r-In (1 +r)}+ r(s)] + . (0.3.24)

with corresponding results for the other dependent variables. The expression (C.3.24) is

valid in r < 0(r < 0). In general, this form of the solution is not uniformly valid as r--+00

(i.e. on the piston face with r < 0), unlike the formulation (C.3.18), which is valid on

S= 0 for r < 0. The representations in terms of (s, r) and (a, X) do, however, overlap

for r = 0(1).

From (C.3.24), it appears that the ignition path is defined by the logarithmic

singularity on

r = ri -C(s), (C.3.25)

although the term 0(6) has a stronger algebraic singularity along this path. Results

obtained by Friedman & Herrero (1989) imply that the Clarke equation can at most I

have a logarithmic singularity at ignition. This suggests using a PLK approach to define

ignition through

ri -C(9) (C.3.26)

with

s = + 68(9) + .... (C.3.27)

sI(§) is now chosen to eliminate the algebraic singularity which requires

Si C- n(1-C)+(1 + C)rl(C) (C.3.28) 0
= C

Using this result, and (C.3.26), it can be established that the reaction wave speed

-= [ 1 {rI(c) In(1-C)j +."'", (C.3.29) 0

18
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where now C = C(s). Note that the wave speed becomes unbounded on the piston face

(ý = 0 or s = oo, implying C = 0); this is consistent with numerical prediction for the X

Clarke equation.

Internal to the present region, which is exponentially thin with respect to 6, the

complete structure for the full equations includes a fuel consumption zone that is

exponentially thin in e. Corresponding extensions for the full wave structure are

planned.

The result (C.3.28) also fails near C = 1 where the wave speed is equal to the

speed of the outgoing characteristic leaving the hot spot. Note also that the

temperature solution (C.3.24) has a logarithmic singularity on this characteristic

(r - 1), but the present inner solution is valid only in r > - C(s) with C < 1.

Resolution of these difficulties requires an analysis of the full equations, including

fuel consumption, and is an essential step in providing a complete description of the

ultimate evolution of any detonation wave. Future research will examine this structure.

C.4 Upstream Heat Release

If the ordered limit (C.2.4) is replaced by

1 *"-1 = 0(c), (C.4.1)

then modifications must be made to the analysis described in §C.3. Using the expansion

(C.2.1), with

y i+*T2 YI(, r') To• (C.4.2)

the full rate law

reduces to (C.3.6) downstream of the shock. In general, exothermic heating will also

occur upstream of the shock. Suitable local expansions are
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I

T= 1+eT 10(t)+...

S(C.4.4) U

with Pioo = T 1 c and p,.= U = 0. It is readily established that

d T l w I e T 1 0 0, ( C .4 .5 )

where

too exp -T----o)j. (C.4.6)

When - 1 = O(e), the standard shock relations imply that T_ - 1 - O(f), so that

too = O(1), i.e. ignition times upstream of the shock are now comparable with those

downstream of the shock.

For convenience, it is supposed that the shock is initiated at t = t, and

propagates into the region x > 0. The upstream reaction is assumed to start at t = 0

with an initial state

T=p=p=y=l, u=0.

Consequently, from(C.4.5)

T100= In I1-t-) (C.4.7)

Obviously, for the current analysis to be appropriate, to, > to.

The solution downstream of the shock is still governed by the Clarke equation,

but conditions on the shock path

=V(ii - T), (ii = ti - to) (C.4.8)

must be modified. In particular, the relationship between the temperature and velocity

perturbations is
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T,1 = 6Qv,l + Q..Tjoo, (C.4.9)

where

2(yMo + 1)V (.Q = (No2 + 1)((7-f 0)i_ +2)) (C.4.10)

Qoo= 1- 6 qoo, (C.4.11)

and

2-y (M2o- 1)(Y(7y + 1)2Mo6 + Y(y- 1)M4o + 7(7 + 5)M2 + 2)qo-(1 +1)2 Mo2 [( I )Mo2+2](.1)

Similarly,

PSi = Rv8 I + RcTI (C.4.13)

with • *
(3y + 1)M2-(--1) (0.4.14)

(Y + 1)poT o2(M2 + 1))"

Here the coefficients denoted by a subscript oo are associated with the upstream

behavior.

From these results, the leading order solution for the temperature perturbation is

found to be

T1 I n [,r + (1 - to 1)V - •.(C.4.15)

In addition, relative to shock initiation, the ignition time is

ti -to = 1 to (..6
too

tt-0 = "~ (0.4.16)

Corresponding results for the velocity and pressure perturbation have been determined 5
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A

and can be written down in a form similar to (C.3.8) and (C.3.11). Similarly,
extensions of the analysis to describe the hot spot structure have been carried out using
the approach described in §C.3. Calculations of higher order corrections to the
tempe'-ature distribution and the ignition time are partially complete.

C.5 Ignition from a Spatially Distributed Source

(a) BdkTer

For a spatially uniform initial state, ignition should ideally occur in a spatially
homogeneous manner. Weak irregularities in the background thermal field, however,
can lead to local hot spots that become energetic centers associated with the

development of a thermal explosion. Problems of this type have been considered for

bounded domains (0 < x < 9) by Jackson, Kapila & Stewart (1989)2. Over the induction

phase, prior to ignition, it can be shown that the disturbance is still governed by

Clarke's equation.

In this section the variables adopted will follow those introduced by JKS.
Relative to (C.2.2), the coordinates (x,t) are now replaced by (-y3/ 2x, -yt) and the Clarke
equation becomes

I *
02 2 (OT.• )( 2 a2 eTl=e .

0t2  X0t2 09 )t2=
Similarly, the results (C.3.1) and (C.3.4) can be re-written as

tI
( ± _ui) =je T1 (C.5.2)

t =-e T1, (C.5.3)

with, as before, 6 = ( 1-1)/-y. It is assumed that there is an initially thermal non-

uniformity of size c so that

TI(x, 0) = O(x/,)with }(C.5.4)

p1(x,0) = u1(x,0) = 0.

2Hereafter referred to as JKS.
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In addition, the velocity must satisfy

X

u1(Ot) = u1(It) = 0. (C.5.5)

For convenience, the domain 0 <x < I is mapped onto the unit interval by

introducing

(x,t)=*,I(x,t), (C.5.6)

together with

T=CT1- en eC pl=ý,p + en e } (C.5.7)

Under this mapping, the basic equations are invariant. Boundary and initial data are

also unchanged save that

Tl(X,O) = 91(x) + In e = O(x:e). (C.5.8)

Newtonian expansions of the form

Ti = T 10(x,t) + 6TI I(x,t) + . . (C.5.9)

etc., are used to generate the small amplitude pre-ignition solution. As in §3, it is

assumed that 1 > 6 > e. The basic solutions for the temperature is easily shown to be

To= -In [te(x) - tj, (C.5.10)

where the apparent ignition locus SI

te(X) = exp{ - O(x;t)}. (C.5.11I)

Further analysis then gives
23
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4pio = f(oa + f(kl) + I + (x,1) -I_ (x,3)

4u 1 0 = f(a)-f(3)+ I+(x,)+ + I _(x, ) 
•(C.5.12)

where

S _2ds (C.5.13)
I~~ .xr tt(s) -(r ±s

andl
a= t- x, dt+ X. (C.5.14)

The function f(t) ('an be found by application of the initial and boundary

conditions. It follows that for 2n > t > 2n - I,

f(t)= .1 J(t-(2un-l)) - I+(2n-t, t-2n), (C.5.15)
Mn = I

and for 2n + 1 > t > 2n,
73

f(t) = E .J(t-(2rn-1)) + I_(t-2n, t-2n), (C.5.'6)
m~1

where

I te(s)_t

J(t) = 4 (is. (C.5.17)o (t'(s)-_ t)2 -(1 -s)

Note that for -1 < t < 0

f(t) I - +( t't). (C.5. 18)

This definition of f(t) can be used to provide a complete representation for the leading

order solution.

As in the shock driven case, it is possible to obtain a higher order correction for

the temperature distribution. This result also yields an important correction to the

ignition time (see §C.5b). From (C.5.3), and the expansion (C.5.9),
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-- T--- =l eTlo T11.

Using (C.5.10), and TI(x,O) = pjo(x,O) = 0, leads to

T 1 (x0t) = p1I°(x't) + t f P10(xs)ds. (C.5-19)

The solution defined by (C.5.10) - (C.5.19) fails near the hot spot on x = 0. Local
solutions of the type discussed in §3 for the shock generated case can again be obtained

in zones that are exponentially close to the hot spot. Details are given in Crighton &
Blythe (1993). As in §3, the analysis described above holds only for t < ti, where ti is
the minimum ignition time on the left end wall. Evolution of the reaction wave away

from the hot spot is not described by the Clarke equation, and (C.5.11) does not provide
an overall description of the ignition path. Results for the minimum ignition time on

x = 0 are presented b&,,uw in §C.5(b).

(b) Ignition times

Initial thermal disturbances considered by JKS were of two types:

e B is characterized by a finite heat flux temperature gradient at the left hand
boundary, where the temperature has its maximum value. In the present rotation

O(x;1) = a(1 - x) + &n 9, (C.5.20)

where a is a positive constant. From (C.5.11) it follows that

te 1 exp( - a(1 - x)), (C.5.21)

with a minimum ignition time

teo = - e - a (C.5.22)

on x = 0.

p I is characterized by zero heat flux at the left hand boundary where again the
temperature has its maximum value. For this case JKS take
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8(x;I) = a(1- x2 ) + en 1, (C.5.23) 4
for which 5

is

te(x) = exp I- a(1l- x 2 )1 (C.5.24)

and again tea is the minimum ignition time on x =0.

Both cases correspond to initiating hot spots at x = r = 0. As in §3, the ignition

time on x = 0 can be found from the expansion

ti = teo + btel + .... (C.5.25)

Determination of tel requires an analysis of the behavior of (C.5.19) near the hot spot.

Based on the results of Friedman & Herrera, it is required that the local singular

behavior is, at most, logarithmic. After some analysis (Crighton & Blythe, 1993) it can

be established that

'. t eo
tel = - 0J t 1 , (0,s) ds. (C.5.27) 6

If the constants I and a are such that teo < 1, then (0 < t < 1)

1 t ds 
(C.5.28)Plo(0,t)= f(t) = tes+st

For type B profiles JKS give, for a = 0.5 and I = 0.8,

ti = 0.447, (C .5.29)

while the present analytical approach yields

ti = 0.461 + O(b2). (C.5.30)

Both of these results are based on - = 7/5 so that 6 = 2/7. In view of the size of 6, the

agreement between (C.5.29) and (C.5.30) is remarkably good. Comparison between the

predicted temperature distribution and JKS shows even better agreement. Details are

provided in Crighton & Blythe (1993). Calculations for type I profiles are currently in

progress.
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